Structure and Dynamics in Liquid Iron at High Pressure and Temperature. A First Principles Study

Author:

González Luis E.1ORCID,González David J.1

Affiliation:

1. Departamento de Física Teórica Universidad de Valladolid Valladolid Spain

Abstract

AbstractWe have studied the evolution of structural and dynamic properties of liquid Fe as a function of pressure for 11 thermodynamic states close to the melting line. The pressure range considered goes from ambient pressure to 323 GPa, and the study has been carried out by using the ab‐initio molecular dynamics technique. The agreement between the calculated static structure and the available experimental data is very good, including details like an asymmetric second peak, which remains over most of the whole pressure range and suggests a significant local icosahedral short‐range order in the liquid. The dynamical structure is studied through the characteristics of the propagating density fluctuations and the associated longitudinal and transverse particle currents. The transverse dispersion relations expose two branches of modes for all pressures, whose range of appearance is analyzed and put in connection with the double‐peak structure of the Fourier spectra of velocity autocorrelation functions. We have also investigated the existence of fingerprints of transverse acoustic excitation modes in the dynamic structure factor for the high pressure states similar to those observed in the inelastic X‐ray scattering intensity data of liquid Fe at ambient pressure. The calculated electronic density of states shows that with increasing pressure there is a widening of the conduction band along with a decreasing significance of spin polarization. Finally, we also report results for transport coefficients like self‐diffusion, shear viscosity and adiabatic sound velocity, which are compared with the available experimental data.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3