Effect of Fluid Salinity on Reaction Rate and Molecular Hydrogen (H2) Formation During Peridotite Serpentinization at 300°C

Author:

Huang Ruifang12ORCID,Shang Xiuqi34,Zhao Yusheng12,Sun Weidong34ORCID,Liu Xi5ORCID

Affiliation:

1. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou PR China

2. SUSTech Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen PR China

3. Center of Deep Sea Research Institute of Oceanology Chinese Academy of Sciences Qingdao PR China

4. University of Chinese Academy of Sciences Beijing China

5. School of Earth and Space Sciences Peking University Beijing China

Abstract

AbstractWe conducted hydrothermal experiments at 300°C and at pressure varying from 2.2 to 3.4 kbar to study the effect of fluid salinity on the coupling between molecular hydrogen (H2) formation and olivine serpentinization, where peridotite and olivine with 25–50 μm of starting grain sizes were reacted with pure H2O and saline solutions (0.5, 1.5, and 3.3 M NaCl). Serpentine, the main hydrous mineral in most experiments, was quantified according to calibration curves based on Fourier‐transformed infrared spectroscopy and X‐ray diffraction analyses. Compared to pure H2O, saline solutions promote the hydrothermal alteration of olivine and peridotite. For experiments with peridotite and pure H2O, 67% of reaction extent was achieved after 14 days, which increased to 89% in experiments with medium‐salinity solutions (1.5 M NaCl) over the same period. Medium‐ and high‐salinity solutions inhibit H2 formation during serpentinization, which is associated with the serpentinization of pyroxene especially clinopyroxene. The redox conditions were constrained according to the equilibrium H2,aq = H2,g, and very reducing conditions were achieved during the serpentinization of olivine and peridotite. This study is the first to show iowaite formation directly from peridotite serpentinization, indicating alkaline solutions. Thermodynamic calculations suggest that the hydrolysis of NaCl (NaCl + H2O = HCl + NaOH) may yield alkaline solutions, due to higher dissociation constants of NaOH compared to HCl. This study suggests that chlorine greatly influences the serpentinization of olivine and peridotite in natural geological settings. It also indicates that iowaite formation may not require oxidizing conditions as previously thought.

Funder

Southern Marine Science and Engineering Guangdong Laboratory

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3