Affiliation:
1. School of Earth and Space Exploration Arizona State University Tempe AZ USA
2. Now at Department of Earth and Planetary Science The University of Tokyo Tokyo Japan
3. Center for Advanced Radiation Sources University of Chicago Chicago IL USA
Abstract
AbstractHexagonal close‐packed (hcp) structured Fe‐Ni alloy is believed to be the dominant phase in the Earth's inner core. This phase is expected to contain 4%–5% light elements, such as Si and H. While the effects of individual light element candidates on the equation of state (EoS) of the hcp Fe metal have been studied, their combined effects remain largely unexplored. In this study, we report the equations of state for two hcp‐structured Fe‐Si‐H alloys, namely Fe0.83Si0.17H0.07 and Fe0.83Si0.17H0.46, using synchrotron X‐ray diffraction measurements up to 125 GPa at 300 K. These alloys were synthesized by cold compression of Fe‐9wt%Si in either pure H2 or Ar‐H2 mixture medium in diamond‐anvil cells. The volume increase caused by a H atom in hcp Fe‐Si‐H alloys is approximately eight times greater than that by a Si atom. We used the improved data set to develop a composition‐dependent EoS that covers a wide range of compositions. Our calculated density and bulk sound velocity of hcp Fe‐Si‐H alloys suggest a large trade‐off between Si and H contents in fitting the seismic properties of the inner core. Combining our new EoS with geophysical and geochemical constraints, we propose 1.6–3 wt% Si and 0.15–0.6 wt% H in the Earth's inner core.
Funder
Division of Earth Sciences
Division of Astronomical Sciences
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献