Seasonal Carbon Dioxide Concentrations and Fluxes Throughout Denmark's Stream Network

Author:

Martinsen Kenneth Thorø1ORCID,Sand‐Jensen Kaj1ORCID,Bergmann Victor1,Skjærlund Tobias1ORCID,Kjær Johan Emil1ORCID,Koch Julian2ORCID

Affiliation:

1. Freshwater Biological Laboratory Department of Biology University of Copenhagen Copenhagen Denmark

2. Department of Hydrology Geological Survey of Denmark and Greenland Copenhagen Denmark

Abstract

AbstractStreams are important freshwater habitats in large‐scale carbon budgets because of their high CO2 fluxes which are driven by high CO2 concentrations and surface‐water turbulence. High CO2 concentrations are promoted by terrestrial carbon inputs, groundwater flow, and internal respiration, all of which vary greatly across space and time. We used environmental monitoring data to calculate CO2 concentrations along with a wide range of predictor variables including outputs from a national hydrological model and trained machine learning models to predict spatially distributed seasonal CO2 concentrations in Danish streams. We found that streams were supersaturated in dissolved CO2 (mean = 118 μM) and higher during autumn and winter than during spring and summer. The best model, a Random Forest model, scored R2 = 0.46, MAE = 46.0 μM, and ⍴ = 0.72 on a test set. The most important predictor variables were catchment slope, seasonality, height above nearest drainage, and depth to groundwater, highlighting the importance of landscape morphometry and soil‐groundwater‐stream connectivity. Stream CO2 fluxes determined from the predicted concentrations and gas transfer velocities estimated using empirical relationships averaged 253 mmol m−2 d−1, and the annual emissions were 513 Gg CO2 from the national stream network (area = 139 km2). Our analysis presents a framework for modeling seasonal CO2 concentrations and estimating fluxes at a national scale by means of large‐scale hydrological model outputs. Future efforts should consider further improving the temporal resolution, direct measurements of fluxes and gas transfer velocities, and seasonal variation in stream surface area.

Funder

Danmarks Frie Forskningsfond

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3