Satellite Derived Trait Data Slightly Improves Tropical Forest Biomass, NPP and GPP Estimates

Author:

Doughty Christopher E.1ORCID,Gaillard Camille1,Burns Patrick1ORCID,Malhi Yadvinder2,Shenkin Alexander1,Minor David3,Duncanson Laura3ORCID,Aguirre‐Gutiérrez Jesús2ORCID,Goetz Scott1,Tang Hao4ORCID

Affiliation:

1. School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff AZ USA

2. Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK

3. Geographical Sciences University of Maryland College Park MD USA

4. Department of Geography National University of Singapore Singapore Singapore

Abstract

AbstractImproving tropical forest current biomass estimates can help more accurately evaluate ecosystem services in tropical forests. The Global Ecosystem Dynamics Investigation (GEDI) lidar provides detailed 3D forest structure and height data, which can be used to improve above‐ground biomass estimates. However, there is still debate on how best to predict tropical forest biomass using GEDI data. Here we compare stand biomass predicted by GEDI data with the observed data of 2,102 inventory plots in tropical forests and find that adding a remotely sensed (RS) trait map of leaf mass area (LMA) significantly (P < 0.001) improves field biomass predictions, but by only a small amount (r2 = 0.01). However, it may also help reduce the bias of the residuals because there was a negative relationship between both LMA (r2 of 0.34) and percentage of phosphorus (%P, r2 = 0.31) and residuals. Leaf spectral data (400–1,075 nm) from 523 individual trees along a Peruvian tropical forest elevation gradient predicted Diameter at Breast height (DBH) (the critical measurement underlying plot biomass) with an r2 = 0.01 and LMA predicts DBH with an r2 = 0.04. Other data sets may offer further improvements and max temperature (Tmax) predicts Amazonian biomass residuals with an r2 of 0.76 (N = 66). Finally, for a network of net primary production (NPP) and gross primary production (GPP) plots (N = 21), leaf traits predicted with remote sensing are better at predicting fluxes than structure variables. Overall, trait maps, especially future improved ones produced by Surface Biology Geology, may improve biomass and carbon flux predictions by a small but significant amount.

Funder

Earth Sciences Division

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3