A Novel Crossed Hysteresis Response Pattern of Sap Flux to Solar Radiation

Author:

Wan Liuliu1,Zhang Quan1ORCID,Arain M. Altaf2ORCID,Cheng Lei1ORCID

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management Wuhan University Wuhan China

2. School of Earth, Environment & Society McMaster University Hamilton ON Canada

Abstract

AbstractThe hysteresis response of tree sap flux (SF) to its main driving factor of incoming short‐wave radiation (Rsi) has been widely reported, affecting the accuracy of sap flux and transpiration estimates in forest ecosystems. The diurnal cycle of SF usually lags the Rsi cycle by certain hours, thereby generating a closed counterclockwise hysteresis pattern. However, a few studies have reported that diurnal SF cycle may advance Rsi cycle, and such a response pattern has not been fully explored. In this study, we reported a rarely seen crossed hysteresis response pattern of SF to Rsi in 1/3 trees of a young temperate pine forest. We found that the diurnal SF cycle advances Rsi cycle especially in the morning induced by the early stomatal closure, thereby generating the crossed hysteresis response of SF to Rsi. We also proposed a method to quantify the magnitude of hysteresis (Ahys) for both the crossed and closed hystereses. Our analysis suggests that a lower Ahys of two time series results in (a) a larger crossing degree of hysteresis, and (b) a stronger linear correlation between the two time series. The seasonal variation of soil water content can explain the variation in Ahys for the hysteresis response of SF to Rsi, and the crossed hysteresis of SF is more likely to occur under water stress conditions. This study contributes to advancing our understanding of forest transpiration and how forests may respond to drought stress, which are expected to become more frequent and longer under future climate change.

Publisher

American Geophysical Union (AGU)

Reference70 articles.

1. Arain M. A.(2018).AmeriFlux CA‐TP3 Ontario—Turkey point 1974 plantation white pine ver. 3–5 AmeriFlux AMP.https://doi.org/10.17190/AMF/124601

2. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3