Seasonal Carbon Budget Succession in Lake Erie's Western Basin

Author:

Eveleth Rachel1ORCID,Gabor Rachel S.2ORCID,Gaffney Katherine M.2ORCID,Chaffin Justin D.3ORCID,Goda Abigail1,Pendley Orion1,Stanislawczyk Keara3

Affiliation:

1. Department of Geosciences Oberlin College Oberlin OH USA

2. School of Environment and Natural Resources The Ohio State University Columbus OH USA

3. F.T. Stone Laboratory and Ohio Sea Grant The Ohio State University Put‐In‐Bay OH USA

Abstract

AbstractLake Erie's Western Basin is a eutrophic region and likely hotspot for carbon transformation. While this basin has received much attention for its high nutrient loads from the Maumee River and recurring harmful algal blooms, carbon has gone understudied. To investigate the seasonal and spatial variability in inorganic and organic carbon budgets, we completed three surveys in spring, summer, and fall on a transect from the Maumee River to South Bass Island. In each survey, we observed higher spatial variability of all carbon species within 11 km of the Maumee River mouth relative to sites outside of Maumee Bay. This variability was driven by pulses of direct river water carbon, steep nutrient gradients, and patchy bloom conditions. Seasonal variability was also greater in Maumee Bay, with the highest river discharge in June adding large amounts of dissolved inorganic and organic carbon and pCO2 flux out of the water when productivity from the diatom bloom was smaller. In August, when and where we observed a Microcystis bloom, particulate organic carbon increased in concentration, and pCO2 flux switched directions into the water. In October, Chl‐a concentrations and oxygen saturations were lowest, indicating a seasonal slowdown in productivity, and river discharge was the lowest, resulting in the lowest total carbon observed and dissolved organic matter chemistry indicating less contribution from the terrestrial watershed. In the open water outside of Maumee Bay seasonal and spatial carbon budget dynamics were more stable, highlighting the importance of riverine inputs on lake carbon cycling.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3