Quantifying Relative Contribution of Submerged Macrophytes to Sedimentary Organic Matter Using Concentrations and δ13C of n‐Alkanes With the Bayesian Multi‐Source Mixing Model: A Case Study From the Yangtze Floodplain

Author:

Zeng Linghan1ORCID,Huang Xianyu12ORCID,Yang Deming3ORCID,Yang Guang1,Zhang Yiming2,Chen Xu1

Affiliation:

1. Hubei Key Laboratory of Critical Zone Evolution School of Geography and Information Engineering China University of Geosciences Wuhan China

2. State Key Laboratory of Biogeology and Environmental Geology China University of Geosciences Wuhan China

3. Division of Anthropology American Museum of Natural History New York NY USA

Abstract

AbstractSubmerged macrophytes are important indicators of the state of shallow freshwater ecosystems. Reconstruction long‐term changes in submerged macrophytes remains a challenge in paleoecology. Here, the relative biomass (mass weight) of different plants to sedimentary organic matter in a shallow lake in central China was estimated using a Bayesian multi‐source mixing model with concentrations and δ13C of n‐alkanes extracted from surface lake sediments. The spatial distribution of submerged macrophytes biomass estimated by the model correlates with water transparency, water depth, and total nitrogen. The correlation patterns are consistent with previously established patterns of submerged macrophyte growth and water conditions, which supports the utility of the Bayesian approach in shallow freshwater lakes. In comparison, Paq, proportion of mid‐chain length (C23, C25) to long‐chain length (C29, C31) homologs, underestimated the contribution of submerged macrophytes, especially in samples with moderate Paq values (0.3 < Paq < 0.4). On the other hand, some discrepancies between the model output and the satellite imagery estimated macrophyte coverage are present, which suggests that ground‐truthing is needed to further evaluate this approach. Our study demonstrates that the Bayesian mixing model combining the abundance and isotopes of n‐alkanes makes a reasonable estimation of the relative biomass of submerged macrophytes in the sediments. This approach provides new insights into reconstructing long‐term variations in submerged macrophytes for paleoecological studies, which is valuable for the restoration and conservation of shallow freshwater lakes when long‐term limnological monitoring is lacking.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3