Microbial Ecology and Site Characteristics Underlie Differences in Salinity‐Methane Relationships in Coastal Wetlands

Author:

Bueno de Mesquita Clifton P.1ORCID,Hartman Wyatt H.1,Ardón Marcelo2ORCID,Bernhardt Emily S.3,Neubauer Scott C.4ORCID,Weston Nathaniel B.5ORCID,Tringe Susannah G.16ORCID

Affiliation:

1. Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA

2. Department of Forestry and Environmental Resources North Carolina State University Raleigh NC USA

3. Nicholas School of the Environment Duke University Durham NC USA

4. Department of Biology Virginia Commonwealth University Richmond VA USA

5. Department of Geography and the Environment Villanova University Villanova PA USA

6. Environmental Genomics and Systems Biology Division Lawrence Berkeley National Laboratory Berkeley CA USA

Abstract

AbstractMethane (CH4) is a potent greenhouse gas emitted by archaea in anaerobic environments such as wetland soils. Tidal freshwater wetlands are predicted to become increasingly saline as sea levels rise due to climate change. Previous work has shown that increases in salinity generally decrease CH4 emissions, but with considerable variation, including instances where salinization increased CH4 flux. We measured microbial community composition, biogeochemistry, and CH4 flux from field samples and lab experiments from four different sites across a wide geographic range. We sought to assess how site differences and microbial ecology affect how CH4 emissions are influenced by salinization. CH4 flux was generally, but not always, positively correlated with CO2 flux, soil carbon, ammonium, phosphate, and pH. Methanogen guilds were positively correlated with CH4 flux across all sites, while methanotroph guilds were both positively and negatively correlated with CH4 depending on site. There was mixed support for negative relationships between CH4 fluxes and concentrations of alternative electron acceptors and abundances of taxa that reduce them. CH4/salinity relationships ranged from negative, to neutral, to positive and appeared to be influenced by site characteristics such as pH and plant composition, which also likely contributed to site differences in microbial communities. The activity of site‐specific microbes that may respond differently to low‐level salinity increases is likely an important driver of CH4/salinity relationships. Our results suggest several factors that make it difficult to generalize CH4/salinity relationships and highlight the need for paired microbial and flux measurements across a broader range of sites.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3