Using Element/Ca Response to Cleaning in Foraminifera From Endmember Depositional Environments to Infer Contaminants and Inform Pretreatment

Author:

Cook Madelyn K.12ORCID,Hendy Ingrid L.1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA

2. Department of Geosciences University of Arizona Tucson AZ USA

Abstract

AbstractPast ocean conditions are often reconstructed using the elemental composition of foraminiferal calcite. However, foraminiferal remains are often impacted by post‐depositional contaminants; thus, they require cleaning prior to element/Ca (El/Ca) analysis. To explore the impact of sample pretreatment on foraminiferal El/Ca ratios (Li, Na, Mg, Al, Mn, Fe, Zn, Sr, I, Ba, and U) we performed six cleaning procedures on four foraminifera populations from distinct depositional environments: Two from South Pacific carbonate ooze (ELT25‐11) and two from the hemi‐pelagic sediments of the California Margin (ODP1017E, SPR0901‐04BC). Despite differences in regional oceanography, sample type (i.e., surface‐ or deep‐dwelling planktic, benthic), and cleaning procedure, the main driver of El/Ca variability in the data set is the sedimentary depositional environment, suggesting site‐specific differences in element concentrations and contaminants. This finding challenges the notion that sample cleaning procedures should be informed by the El/Ca of paleoclimate interest, as elements may be found in different contaminants and/or elemental abundances in unique environments. Our data also show that traditional cleaning methods which use a combination of rinsing, sonication, oxidation/reduction, and complexation reactions effectively remove contaminants found on foraminifera in either depositional environment. However, even after contaminant removal, some elements (i.e., U and Fe) remain higher in California Margin foraminifera relative to South Pacific foraminifera. This suggests that the range of acceptable El/Ca values in the literature must be expanded when working with foraminifera from unusual depositional environments (i.e., hemipelagic, siliciclastic sites with high sedimentation regimes) versus values associated with more typical sites (i.e., a pelagic carbonate ooze).

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3