Factors Contributing to Slab Locations and Geometries in Reconstructions of Past Mantle Flow

Author:

Weber Joshua1,Flament Nicolas1ORCID

Affiliation:

1. School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia

Abstract

AbstractIndividual sinking slabs present markedly different geometries between 410 and 660 km depths, from vertical slabs penetrating the lower mantle to slabs stagnating above the lower mantle. The proposed factors determining these contrasted geometries include mantle viscosity and the magnitude and evolution of trench retreat. Here, we assess the success of paleo‐geographically driven global mantle flow models in matching slabs in tomographic models between 400 km and 1,000 km depth. We quantify the spatial match between predicted present‐day mantle temperature anomalies and vote maps of tomographic models. We investigate the sensitivity of the spatial match to input parameters of the mantle flow model: imposed tectonic reconstruction, model start age, and viscosity contrast between the upper and lower mantle. We evaluate the visual match between model slabs and tomographic vote maps for three circum‐Pacific regions with contrasted slab dip angles between 400 km and 1,000 km depth. Predicted model slabs better match slabs inferred from tomography when there is an increase in viscosity at 660 km depth. The temporal evolution of the models and the global match at present day suggest that the subduction history could be refined in the global tectonic reconstructions that we considered. For example, we suggest that the subduction to the east of Japan should be offset by approximately 100 km to the west at ∼80 Ma to match the anchoring of a continuous slab into the lower mantle suggested by tomography.

Funder

Australian Research Council

National Computational Infrastructure

Australian Government

University of Wollongong

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3