Affiliation:
1. State Key Laboratory of Geological Processes and Mineral Resources China University of Geosciences (Beijing) Beijing China
2. Isotope Laboratory Department of Earth and Space Sciences The University of Washington Seattle WA USA
3. United States Geological Survey Reston VA USA
4. CAS Key Laboratory of Crust‐Mantle Materials and Environments School of Earth and Space Sciences University of Science and Technology of China Hefei China
5. State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
6. Department of Earth and Planetary University of Tennessee Knoxville TN USA
Abstract
AbstractThe behavior of nickel (Ni) isotopes during magmatic differentiation is not adequately explored. Here, we find that tholeiitic rocks in the Kīlauea Iki (KI) lava lake, Hawai'i, show progressively lighter Ni isotopic compositions with increasing magmatic differentiation, whereas calc‐alkaline rocks from the thick Kamchatka arc (30–45 km), located at the convergent boundary of the Eurasian and Pacific plates show increasing Ni isotope values as MgO and Ni decrease. Forty‐three global intermediate‐felsic continental igneous rocks analyzed in this study display large Ni isotopic variations, with the Eoarchean samples having light Ni isotopic compositions that fall in the trend defined by the KI lavas, and the post‐Eoarchean samples showing systematically heavier Ni isotopic compositions overlapping those of Kamchatka arc rocks. The isotopic dichotomy results from the crystallization of isotopically heavy magnetite during low‐pressure differentiation of KI lavas, whereas the participation of sulfide separation that removes isotopically light Ni during high‐pressure differentiation of magmas traversing thick continental crust. Combined with Rhyolite‐MELTS and sulfur concentration at sulfide saturation simulations, we demonstrate that the Ni isotope fractionation during magmatic differentiation is mainly controlled by the tempo of magnetite crystallization and sulfide formation, which is a function of pressure, oxygen fugacity, and water activity. High‐pressure calc‐alkaline differentiation usually suppresses magnetite crystallization while stabilizing sulfide, leading to heavy Ni isotopic compositions for the evolved magmas, significantly deviating from the low‐pressure fractionation trend seen in the KI lavas. Ni isotopes can be used in the future as a tracer of magmatic differentiation and processes of continent formation and differentiation.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献