Affiliation:
1. Institute of Geology Chinese Academy of Geological Sciences Beijing China
2. School of Earth Sciences and Resources China University of Geosciences (Beijing) Beijing China
3. Shandong Fifth Institute of Geology and Mineral Exploration Taian China
4. Department of Earth Sciences University of Oxford Oxford UK
Abstract
AbstractThe tectonic evolution of the Neo‐Tethys Ocean remains highly controversial, with several models existing in the community that conflict with each other. Here, we present new geochronologic and geochemical data for orthogneisses and amphibolites from the Greater Himalayan Sequence, eastern Himalayan orogen, which indicate that these rocks have Cenozoic metamorphic ages (∼52–3 Ma), but were derived from Late Cretaceous (∼89 Ma) magmas with arc‐like and depleted mantle geochemical signatures. Considering that northern India was a passive continental margin during the Mesozoic, and the previously reported Late Cretaceous magmatic rocks in the eastern Himalaya formed in a continental rifting setting, we suggest that the studied Late Cretaceous arc‐type magmatic rocks formed in an intraoceanic arc setting within the Neo‐Tethys, and accreted onto the passive margin of the Indian continent prior to the terminal continental collision. When combined with the existence of Late Mesozoic and intraoceanic arc‐type magmatic rocks in the western Himalaya, we suggest that a huge Late Cretaceous subduction system operated within the eastern Neo‐Tethys Ocean. This study supports two subduction zones having been responsible for the consumption and closure of the Neo‐Tethys basin, and a two‐stage collision history between India, Asia, and the intermediate island arc system. Our data therefore provide important constraints on the evolution of the Neo‐Tethys Ocean and India‐Asia collisional orogeny in southern Tibet.
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献