Geochemical and Sr‐Nd‐Pb‐Fe Isotopic Constraints on the Formation of Fe‐Si Oxyhydroxide Deposits at the Ultraslow‐Spreading Southwest Indian Ridge

Author:

Li Jiangtao1ORCID,Sun Mingxue1,Qi Wenlong1,Zhou Zhe1,Hohl Simon V.1ORCID,He Zhiwei1ORCID

Affiliation:

1. State Key Laboratory of Marine Geology Tongji University Shanghai China

Abstract

AbstractModern Fe‐Si oxyhydroxide deposits occur in global marine hydrothermal vent sites. Despite their role as biogenic substrates and potential ore resources, much remains unknown about their formation processes. Here, we apply analyses of major and trace elements as well as Sr‐Nd‐Pb‐Fe isotopes combined with 238U‐230Th dating to Fe‐Si oxyhydroxides obtained from several hydrothermal fields along the Southwest Indian Ridge. These mineralized oxyhydroxides primarily consist of poorly crystalline two‐line ferrihydrite and amorphous opal‐A, with lesser amounts of nontronite and birnessite. The ubiquitous and characteristic Fe‐rich ultrastructures in the oxyhydroxides directly indicate microbial activity. The 238U‐230Th dating constrains their crystallization ages from ca. 11,873 to 384 years old. The seawater‐like 87Sr/86Sr and varying 143Nd/144Nd ratios underline a high proportion of seawater mixed with hydrothermal fluids. The radiogenic Pb isotopic patterns suggest a primary derivation of Pb leached from substrate basalts and to a lesser extent Pb from seawater. Stable iron isotopic compositions for different oxyhydroxides display a remarkable range between −1.47 and 0.82‰, which were interpreted as reflecting the fractionation processes during the formation of the deposits under evolving depositional redox conditions. The partial oxidation of Fe(II) and the subsurface removal of isotopically heavy Fe oxyhydroxides are suggested to play a vital role in shifting the Fe isotopic signature toward more negative values. Given that these Fe‐Si oxyhydroxide deposits exhibit features similar to certain ancient iron formations (IFs), Fe isotope systematics of these deposits may hold significant potential for fingerprinting the biological Fe oxidation processes that drove IF deposition on early Earth.

Funder

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3