Affiliation:
1. Key Laboratory of Petroleum Resources Research, Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China
2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
3. Key Laboratory of Cenozoic Geology and Environment Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
Abstract
AbstractStudying the evolution history of the southwest summer monsoon (SSM) throughout geological time, particularly during its strongest period in the Holocene, can improve our understanding of its variation and driving mechanisms, and even help predict future climate changes, due to its significant social and economic implications. Here, we reconstructed the history of chemical weathering intensity since the Last Glacial Maximum (LGM) based on clay mineral proxies [(illite/smectite)/(illite + chlorite) and illite crystallinity] obtained from Qionghai Lake sediments and examined its response to paleoclimate and SSM. Our findings indicate that the intensity of chemical weathering generally aligned with changes in paleoclimate, exhibiting strong chemical weathering intensity during warm and humid climate conditions. In addition, the intensity of chemical weathering basically tracks the evolution of the SSM since the LGM. Our results support the view that the highest SSM intensity occurred during the early‐middle Holocene, followed by gradual weakening during the late Holocene, with Northern Hemisphere summer insolation being the primary driver of the SSM evolution. The variations of the SSM and the corresponding intensity of chemical weathering were also influenced by the cumulative effects of glacier boundary conditions, North Atlantic climate fluctuations, and Intertropical Convergence Zone migrations.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences Key Project
Youth Innovation Promotion Association
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献