Chemical Weathering Intensity as a Reliable Indicator for Southwest Summer Monsoon Reconstruction: Evidence From Clay Minerals of Qionghai Lake Sediments Since the Last Glacial Maximum

Author:

Yu Xiaoli12ORCID,Wang Gen1,Zhang Ting1,Ma Xueyun1ORCID,Zhang Xiaomei1,Li Lun12,Li Zelong12,Guo Zengguang3,Wei Zhifu1ORCID,Wang Yongli3,Zhou Shixin1

Affiliation:

1. Key Laboratory of Petroleum Resources Research, Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Key Laboratory of Cenozoic Geology and Environment Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

Abstract

AbstractStudying the evolution history of the southwest summer monsoon (SSM) throughout geological time, particularly during its strongest period in the Holocene, can improve our understanding of its variation and driving mechanisms, and even help predict future climate changes, due to its significant social and economic implications. Here, we reconstructed the history of chemical weathering intensity since the Last Glacial Maximum (LGM) based on clay mineral proxies [(illite/smectite)/(illite + chlorite) and illite crystallinity] obtained from Qionghai Lake sediments and examined its response to paleoclimate and SSM. Our findings indicate that the intensity of chemical weathering generally aligned with changes in paleoclimate, exhibiting strong chemical weathering intensity during warm and humid climate conditions. In addition, the intensity of chemical weathering basically tracks the evolution of the SSM since the LGM. Our results support the view that the highest SSM intensity occurred during the early‐middle Holocene, followed by gradual weakening during the late Holocene, with Northern Hemisphere summer insolation being the primary driver of the SSM evolution. The variations of the SSM and the corresponding intensity of chemical weathering were also influenced by the cumulative effects of glacier boundary conditions, North Atlantic climate fluctuations, and Intertropical Convergence Zone migrations.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences Key Project

Youth Innovation Promotion Association

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3