Low Temperature Magnetic Properties of Variably Oxidized Natural and Synthetic Siderite

Author:

Dekkers Mark J.1ORCID,Hanckmann Wout1,Spassov Simo2,Behrends Thilo1

Affiliation:

1. Department of Earth Sciences Utrecht University Utrecht The Netherlands

2. Geophysical Centre of the Royal Meteorological Institute of Belgium Dourbes Belgium

Abstract

AbstractSiderite (FeCO3) is an important ferrous iron carbonate in the geochemical cycling of iron, as it is a sink for iron under reducing conditions. However, its detection is not straightforward with classical analytical approaches because in natural samples it is often fine‐grained and/or occurs in low concentrations. In this study, we explore the analytical potential of low‐temperature magnetometry. Synthetic siderites with a limited amount of associated ferric iron of up to 5 mol% and some natural siderites were subjected to investigation. Maxima in the cooling curves in a 5 T magnetic field shows that the Néel temperature of siderite is at 37 K in agreement with literature data. Those maxima appear at a higher temperature in the synthetic siderites with associated/sorbed ferric iron; it is 45 K for the 5 mol% Fe3+ synthesis. With the increasing amount of ferric iron, the synthetic siderites show an increasingly prominent remanence tail beyond the nominal Néel temperature in field‐cooled (FC) and zero‐field‐cooled (ZFC) warming curves of the remanent magnetization acquired in 5 T at 5 K. Fine‐grained siderite alters in air on laboratory time scales which is manifested by more pronounced remanence tails up to higher temperatures. Siderite's presence is best diagnosed by evaluating a combination of FC warming curves and a FC/ZFC remanence ratio >3 at 5 K. Standard addition experiments of FC warming curves enable the determination of siderite down to 0.1 wt%.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3