Geochemical Constraints on the Origin of Primitive Potassic Lavas in the Eastern Virunga Volcanic Province

Author:

Pitcavage E.12ORCID,Furman T.1ORCID,Nelson W. R.3ORCID,Graham D. W.4ORCID,Shirey S.5ORCID,Kulyanyingi P. K.6,Barifaijo E.6

Affiliation:

1. Department of Geosciences Pennsylvania State University University Park PA USA

2. Now at Blue Origin LLC Kent WA USA

3. Department of Physics, Astronomy, and Geosciences Towson University Towson MD USA

4. College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA

5. Earth and Planets Laboratory Carnegie Institution for Science Washington DC USA

6. Department of Geology and Petroleum Studies Makerere University Kampala Uganda

Abstract

AbstractYoung mafic lavas from the East African Western Rift record melting of subcontinental lithospheric mantle that was metasomatically modified by multiple tectonic events. We report new isotope data from monogenetic cinder cones near Bufumbira, Uganda, in the Virunga Volcanic Field: 87Sr/86Sr = 0.7059–0.7079, εNd = −6.5 to −1.3, εHf = −6.3 to +0.9, 208Pb/204Pb = 40.1–40.7, 207Pb/204Pb = 15.68–15.75, and 206Pb/204Pb = 19.27–19.45. Olivine phenocrysts from the Bufumbira lavas have 3He/4He = 6.0–7.4 RA. The isotopic data, in conjunction with major and trace element systematics, indicate that primitive Bufumbira magmas are derived from two different metasomatized lithospheric source domains. Melts generated by lower degrees of melting record greater contributions from ∼1 to 2 Ga isotopically enriched garnet‐amphibole‐phlogopite pyroxenite veins within the lithosphere. As melting progresses, these vein melts become increasingly diluted by melts that originate near the lithosphere/asthenosphere boundary, shifting the isotopic compositions toward the common lithospheric mantle (CLM) proposed by Furman and Graham (1999, https://doi.org/10.1016/s0024-4937(99)00031-6). This ∼450–500 Ma source domain appears to underlie all Western Rift volcanic provinces and is characterized by 87Sr/86Sr ∼ 0.705, εNd ∼ 0, εHf ∼ +1 to +3, 206Pb/204Pb ∼ 19.0–19.2, 208Pb/204Pb ∼ 39.7, and 3He/4He ∼ 7 RA. Basal portions of the dense subcontinental lithospheric mantle may become gravitationally unstable and founder into underlying warmer asthenosphere, exposing surfaces where melting of locally heterogeneous veins produces small‐volume, alkaline mafic melts. Mafic lavas from all Western Rift volcanic provinces record mixing between the CLM and locally variable metasomatized source domains, suggesting this style of melt generation is fundamental to the development of magma‐poor rifts.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3