Volcanic Diffuse Volatile Emissions Tracked by Plant Responses Detectable From Space

Author:

Bogue Robert R.1ORCID,Douglas Peter M. J.1ORCID,Fisher Joshua B.2ORCID,Stix John1ORCID

Affiliation:

1. Department of Earth and Planetary Sciences McGill University Montreal QC Canada

2. Schmid College of Science and Technology Chapman University Orange CA USA

Abstract

AbstractVolcanic volatile emissions provide information about volcanic unrest but are difficult to detect with satellites. Volcanic degassing affects plants by elevating local CO2 and H2O concentrations, which may increase photosynthesis. Satellites can detect plant health, or a reaction to photosynthesis, through a Normalized Difference Vegetation Index (NDVI). This can act as a potential proxy for detecting changes in volcanic volatile emissions from space. We tested this method by analyzing 185 Landsat 5 and 8 images of the Tern Lake thermal area (TLTA) in northeast Yellowstone caldera from 1984 to 2022. We compared the NDVI values of the thermal area with those of similar nearby forests that were unaffected by hydrothermal activity to determine how hydrothermal activity impacted the vegetation. From 1984 to 2000, plant health in the TLTA steadily increased relative to the background forests, suggesting that vegetation in the TLTA was fertilized by volcanic CO2 and/or magmatic water. Hydrothermal activity began to stress plants in 2002, and by 2006, large swathes of trees were dying in the hydrothermal area. Throughout most of the 1990s, the least healthy plants were located in the area which became the epicenter of hydrothermal activity in 2000. These findings suggest that plant‐focused measurements are sensitive to minor levels of volcanic unrest which may not be detected by other remote sensing methods, such as infrared temperature measurements. This method could be a safe and effective new tool for detecting changes in volatile emissions in volcanic environments which are dangerous or difficult to access.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3