Local Seismicity and Sediment Deformation in the West Svalbard Margin: Implications of Neotectonics for Seafloor Seepage

Author:

Domel P.1ORCID,Plaza‐Faverola A.2ORCID,Schlindwein V.34ORCID,Bünz S.2ORCID

Affiliation:

1. Department of Geosciences UiT—The Arctic University of Norway Tromsø Norway

2. iC3: Centre for ice, Cryosphere, Carbon and Climate Department of Geosciences UiT—The Arctic University of Norway Tromsø Norway

3. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany

4. Faculty of Geosciences University of Bremen Bremen Germany

Abstract

AbstractIn the Fram Strait, mid‐ocean ridge spreading is represented by the ultra‐slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub‐surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11‐month‐long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid‐ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn‐rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post‐glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3