Rapid Changes in Strength and Direction of Earth's Magnetic Field Over the Past 100,000 Years

Author:

Constable Catherine G.1ORCID,Davies Christopher J.2ORCID

Affiliation:

1. Institute of Geophysics & Planetary Physics Scripps Institution of Oceanography University of California San Diego La Jolla CA USA

2. School of Earth and Environment University of Leeds Leeds UK

Abstract

AbstractPrevious studies of rapid geomagnetic changes have highlighted the most extreme changes in direction and field strength found in paleomagnetic field models over the past 100 ky. Here we study distributions of rates of change in both time and space. Field models based on direct observations provide the most accurate values for rates of change, but their short duration precludes a complete description of field behavior. Broader representation is provided by time‐varying paleofield models, here including GGF100k, GGFSS70, LSMOD.2, CALS10k.2, HFM.OL1.A1, pfm9k.2, and SHAWQ‐iron age although variability across models and lack of temporal and spatial resolution of fine scale variations make direct comparisons difficult. For the paleofield we define rapid changes as exceeding the peak overall value of 0.4° yr−1 for directional changes and 150 nT yr−1 for intensities as established by the gufm1 model spanning 1590–1990 CE. We find that rapid directional changes are associated with low field strength and can spread across all latitudes during such episodes. Distributions of directional rates of change exhibit high skewness for models that include excursions. Rates of change in field intensity exceeding 150 nT yr−1 arise in brief intervals during the Holocene particularly associated with the strong field Levantine Iron Age Anomaly. Around the Laschamp excursion there are also rare localized occurrences of rapid intensity change. Limitations in current models make it difficult to define absolute rates for past changes, but we see that rapid changes are essential field characteristics not observed in the modern field that should nevertheless be regarded as an essential for Earth‐like dynamo simulations.

Funder

National Science Foundation

Natural Environment Research Council

Engineering and Physical Sciences Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3