Transient and Steady‐State Friction in Non‐Isobaric Conditions

Author:

Barbot Sylvain1ORCID

Affiliation:

1. Department of Earth Sciences University of Southern California Los Angeles CA USA

Abstract

AbstractThe frictional properties of faults control the initiation and propagation of earthquakes and the associated hazards. Although the ambient temperature and instantaneous slip velocity controls on friction in isobaric conditions are increasingly well understood, the role of normal stress on steady‐state and transient frictional behaviors remains elusive. The friction coefficient of rocks exhibits a strong dependence on normal stress at typical crustal depths. Furthermore, rapid changes in normal stress cause a direct effect on friction followed by an evolutionary response. Here, we derive a constitutive friction law that consistently explains the yield strength of rocks from atmospheric pressure to gigapascals while capturing the transient behavior following perturbations in normal stress. The model explains the frictional strength of a variety of sedimentary, metamorphic, and igneous rocks and the slip‐dependent response upon normal stress steps of Westerly granite bare contact and synthetic gouges made of quartz and a mixture of quartz and smectite. The nonlinear normal stress dependence of the frictional resistance may originate from the distribution of asperities that control the real area of contact. The direct and transient effects may be important for induced seismicity by hydraulic fracturing or for naturally occurring normal stress perturbations within fault zones in the brittle crust.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3