Hydrothermal Plume Fallout, Mass Wasting, and Volcanic Eruptions Contribute to Sediments at Loki's Castle Vent Field, Mohns Ridge

Author:

Gartman A.1ORCID,Payan D.1,Au M.1,Reeves E. P.2ORCID,Jamieson J. W.3ORCID,Gini C.3ORCID,Roerdink D.2

Affiliation:

1. Pacific Coastal and Marine Science Center U.S. Geological Survey Santa Cruz CA USA

2. Department of Earth Science & Centre for Deep Sea Research University of Bergen Bergen Norway

3. Department of Earth Sciences Memorial University of Newfoundland St. John's NL Canada

Abstract

AbstractSediments surrounding hydrothermal vents are important transition spaces between hydrothermal and pelagic environments. These sediments accumulate through diverse processes that include water column plume fallout, volcanic ash deposition, and mass wasting of hydrothermal chimneys and mounds superimposed upon background sedimentation which may originate from pelagic, terrestrial, and volcanic sources. In addition to being a sink for elements discharged from hydrothermal vents, elements may also be scavenged from seawater onto oxidized hydrothermal material. Preservation of these hydrothermal sediments may occur depending on the extent of oxidative and/or reductive dissolution processes after burial. Sediments remaining adjacent to active venting may also be hydrothermally altered after emplacement. To better understand these processes, here we evaluate sediment push cores collected from the Loki's Castle vent field at the intersection of the slow‐ultraslow spreading Mohns and Knipovich mid‐ocean ridges. All samples were collected within ∼225 m of current high‐temperature (299–316°C) “black smoker” fluid discharge. These sediment cores are highly heterogeneous and lack stratigraphic correlation, even for samples taken within meters of each other. Most sediment cores are dominated by either pelagic sediments or mass wasted hydrothermal material, with hydrothermal plume fallout contributing a low proportion of material, and only a single volcanic ash layer occurring in one of the 13 cores. Dominant hydrothermal minerals found include talc, goethite, pyrite, pyrrhotite, and sphalerite. We find that even after several thousand years, most mass wasted hydrothermal material remains minimally altered, with sedimentation rates indistinguishable from background rates within several hundred meters of the hydrothermal vent source.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3