Prolonged Multi‐Phase Magmatism Due To Plume‐Lithosphere Interaction as Applied to the High Arctic Large Igneous Province

Author:

Heyn Björn H.1ORCID,Shephard Grace E.12,Conrad Clinton P.1ORCID

Affiliation:

1. Department of Geosciences Centre for Planetary Habitability University of Oslo Oslo Norway

2. Research School of Earth Sciences Australian National University Acton ACT Australia

Abstract

AbstractThe widespread High Arctic Large Igneous Province (HALIP) exhibits prolonged melting over more than 50 Myr, an observation that is difficult to reconcile with the classic view that large igneous provinces (LIPs) originate from melting in plume heads. Hence, the suggested plume‐related origin and classification of HALIP as a LIP have been questioned. Here, we use numerical models that include melting and melt migration to investigate a rising plume interacting with lithosphere of variable thickness, that is, a basin‐to‐craton setting applicable to the Arctic. Models reveal that melt migration introduces significant spatial and temporal variations in melt volumes and pulses of melt production, including protracted melting for at least about 30–40 Myr, because of the dynamic feedback between migrating melt and local lithosphere thinning. For HALIP, plume material deflected from underneath the Greenland craton can re‐activate melting zones below the previously plume‐influenced Sverdrup Basin after a melt‐free period of about 10–15 Myr, even though the plume is already ∼500 km away. Hence, actively melting zones do not necessarily represent the location of the deeper plume stem at a given time, especially for secondary pulses. Additional processes such as (minor) plume flux variations or local lithospheric extension may alter the timing and volume of HALIP pulses, but are to first order not required to reproduce the long‐lived and multi‐pulse magmatism of HALIP. Since melting zones are always plume‐fed, we would expect HALIP magmatism to exhibit plume‐related trace element signatures throughout time, potentially shifting from mostly tholeiitic toward more alkalic compositions.

Funder

Norges Forskningsråd

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3