Generation of Evolving Plate Boundaries and Toroidal Flow From Visco‐Plastic Damage‐Rheology Mantle Convection and Continents

Author:

Becker Thorsten W.123ORCID,Fuchs Lukas4ORCID

Affiliation:

1. Institute for Geophysics Jackson School of Geosciences The University of Texas at Austin Austin TX USA

2. Department of Earth and Planetary Sciences Jackson School of Geosciences The University of Texas at Austin Austin TX USA

3. Oden Institute for Computational Engineering & Sciences The University of Texas at Austin Austin TX USA

4. Institute for Geosciences Goethe University Frankfurt Germany

Abstract

AbstractEarth's style of planetary heat transport is characterized by plate tectonics which requires rock strength to be reduced plastically in order to break an otherwise stagnant lithospheric lid, and for rocks to have a memory of past deformation to account for strain localization and the hysteresis implied by geological sutures. Here, we explore ∼107 Rayleigh number, visco‐plastic, 3‐D global mantle convection with damage. We show that oceanic lithosphere‐only models generate strong toroidal‐poloidal power ratios and features such as a mix of long‐wavelength tectonic motions and smaller‐scale, back‐arc tectonics driven by downwellings. Undulating divergent plate boundaries can evolve to form overlapping spreading centers and microplates, promoted and perhaps stabilized by the effects of damage with long memory. The inclusion of continental rafts enhances heat flux variability and toroidal flow, including net rotation of the lithosphere, to a level seen in plate reconstructions for the Cenozoic. Both the super‐continental cycle and local rheological descriptions affect heat transport and tectonic deformation across a range of scales, and we showcase both general tectonic dynamics and regionally applied continental breakup scenarios. Our work points toward avenues for renewed analysis of the typical, mean behavior as well as the evolution of fluctuations in geological and model plate boundary evolution scenarios.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Upscaling from mineral microstructures to tectonic macrostructures;Geophysical Journal International;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3