Degassing of Mantle‐Derived Helium From Hot Springs Along the India‐Asia Continental Collision Settings: Origins, Migration Velocity and Flux

Author:

Hao Yinlei12ORCID,Gong Qinghua12,Kuang Xingxing3ORCID,Feng Yuqing4ORCID,Zhou Hui3,Zheng Chunmiao35ORCID

Affiliation:

1. Guangdong Open Laboratory of Geospatial Information Technology and Application Guangzhou Institute of Geography Guangdong Academy of Sciences Guangzhou China

2. Guangdong Geological Disaster Emergency Technology Research Center Guangzhou China

3. Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China

4. Hebei Center for Ecological and Environmental Geology Research Hebei GEO University Shijiazhuang China

5. Eastern Institute for Advanced Study Eastern Institute of Technology Ningbo China

Abstract

AbstractMantle‐derived volatile degassing lacks quantitative evaluation in continental regions without active magmatism, such as the Tibetan Plateau. Ten new gas abundance and helium isotope data points combined with 286 hydrothermal volatile literature data points in India–Asia continental collision settings demonstrate widespread mantle‐derived volatiles across the thick (∼70 km) crust. The mantle‐derived 3He is best explained by direct mantle volatile input from subcontinental lithospheric mantle (1%–36.5%) or the asthenospheric wedge (1%–27.8%) instead of fossil residual magmatic fluids or Quaternary mantle‐derived melt intrusion into crustal depth. Mantle‐derived 3He is transported from the deep mantle to the surface at an upflow rate of 30–11,700 mm/year based on a newly developed steady‐state one‐dimensional flow model, corresponding to a mantle‐derived 3He flux of 17 to 1.5 × 107 atoms m−2 s−1 (81.7%–99.4% of the total 3He flux) and a mantle‐derived 4He flux from 2.0 × 106 to 1.8 × 1012 atoms m−2 s−1 (1.4%–36.5% of the total 4He flux). The mantle‐derived helium fluxes in the study area are comparable to those of other nonvolcanic hydrothermal systems in the tectonically active regions but lower than those of volcanic fields. The helium transit time ranges from 5.3 ka to 2.3 Ma, indicating that the spatial pattern of 3He/4He ratios in the India‐Asia continental collision settings can provide a snapshot of the state of the Indian mantle lithosphere between those revealed by potassic‐rich mafic rocks (25–8 Ma) and seismic methods (present).

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3