Coseismic Frictional Heating With Concomitant Hydrothermal Fluid Circulation Revealed by Rock Magnetic Properties of Fault Rocks From the Rupture of the 2008 Wenchuan Earthquake, China

Author:

Yan Xiuli123,Zhang Bo4,Wang Guodong12,Yang Tao12ORCID,Chen Jianye3ORCID

Affiliation:

1. Key Laboratory of Intraplate Volcanoes and Earthquakes (China University of Geosciences, Beijing) Ministry of Education Beijing China

2. State Key Laboratory of Geological Processes and Mineral Resources School of Geophysics and Information Technology China University of Geosciences Beijing China

3. State Key Laboratory of Earthquake Dynamics Institute of Geology China Earthquake Administration Beijing China

4. Hebei Key Laboratory of Earthquake Dynamics Institute of Disaster Prevention Langfang China

Abstract

AbstractCoseismic frictional heating and associated hydrothermal fluid circulation play an essential role in the dynamic weakening of seismic faults. However, temperature rise induced by frictional heating during an earthquake is still difficult to constrain. Magnetic properties of fault rocks convey abundant information on faulting processes. In this study, detailed rock magnetic measurements in combination with electron microscopic observations are conducted on fault rocks and protoliths from the Shaba outcrop (Beichuan County) on the Yingxiu‐Beichuan Fault ruptured during the 2008 Wenchuan Mw 7.9 earthquake. Results show that protoliths and the majority of fault rocks are dominated by paramagnetic pyrite and/or Fe‐bearing clay minerals; in contrast, the presence of pyrrhotite and goethite is confined to the fault gouges just next to the principal slip surface. Pyrrhotite is a product of pyrite alteration at high temperatures (>500°C) induced by seismic frictional heating during earthquake slip. Meanwhile, the goethite implies the presence of coseismic hot fluids within the fault zone. All these observations strongly suggest the occurrence of thermal pressurization as a plausible mechanism of coseismic fault weakening during the Wenchuan earthquake.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3