Implications of Flat‐Slab Subduction on Hydration, Slab Seismicity, and Arc Volcanism in the Pampean Region of Chile and Argentina

Author:

Liu Xiaowen12ORCID,Wagner Lara S.3ORCID,Currie Claire A.1ORCID,Caddick Mark J.4ORCID

Affiliation:

1. Department of Physics University of Alberta Edmonton AB Canada

2. Department of Earth Sciences University of Toronto Toronto ON Canada

3. Earth and Planets Laboratory Carnegie Institution for Science Washington DC USA

4. Department of Geosciences Virginia Tech Blacksburg VA USA

Abstract

AbstractThe Pampean flat slab in central Chile and Argentina is characterized by the inland migration and subsequent cessation of arc volcanism since the mid‐Miocene. Slab flattening also affects the distribution and number of intermediate‐depth earthquakes and the evolution of the overlying continental thermal structure. In this study, we combine thermal‐mechanical models with petrological models to examine temporal changes in pressure, temperature, and composition during flat‐slab subduction and estimate water carrying capacity, predicted melt distributions and predicted changes in melt composition. Model results indicate that the present‐day flattened Nazca plate carries water to ∼700 km inland from the trench and could cause flux melting if the material above the slab remains fertile. Observed slab seismicity matches areas where hydrated materials have ∼>3 wt% H2O in the oceanic crust and mantle lithosphere. Seismicity increases as slab water carrying capacity decreases (slab dehydration). As P‐T conditions and compositions of the rock trapped above the slab change during slab flattening, flux melting switches from a peridotite‐dominated early phase to a combined mid‐ocean ridge basalt/eclogite and peridotite melting at ∼8 Ma. The results provide broad consistency with known earthquake distributions, seismic velocities, and observed temporal and spatial changes in volcanic patterns above the Pampean flat slab and point toward the role of melt depletion in the decrease and ultimate cessation of arc volcanism in this region.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3