Sediment Provenance Along the Middle Miocene‐Pleistocene Nankai Subduction Zone From Sediment Transport to Accretion: Implications for Stratigraphy in the Accretionary Prism

Author:

Cornard P. H.1234ORCID,Dawson H. L.15ORCID,Pickering K. T.1

Affiliation:

1. Department of Earth Sciences University College London (UCL) London UK

2. Department of Geology University of Innsbruck Innsbruck Austria

3. Faculty of Geosciences University of Bremen Bremen Germany

4. MARUM – Center for Marine Environment Sciences University of Bremen Bremen Germany

5. Department of Earth Science and Engineering Imperial College London London UK

Abstract

AbstractBased on U‐Pb dating of zircon crystals and petrographic analysis, this study provides new insights into the paleogeographic and accretion evolution along SW Japan. Our data are consistent with an older submarine fan identified from drilling in the Shikoku Basin (Kyushu Fan ∼14.7–12.2 Ma), having a mixed sand provenance from the paleo‐Yangtze/Yellow rivers and the Shimanto Belt, and the younger Zenisu Fan (∼9.2–7.6 Ma), which is mainly sourced from the Shimanto Belt and the Izu‐Bonin/Honshu arc collision. Our results are in agreement with the hypothesis of very oblique subduction or strike‐slip motion between the northern Shikoku Basin and mainland Honshu from ∼12.2 to 9.2 Ma, after which essentially orthogonal subduction occurred after ∼8 Ma. The two main sandbodies drilled at IODP Site C0002 within the inner Nankai Accretionary Prism have similar petrographic signatures to those of the Zenisu and Kyushu submarine fans in the Shikoku Basin. The incorporation of the Shikoku Basin deposits most likely resulted from the seaward propagation of in‐sequence thrusts forming an outer accretionary wedge. The incorporation of the Kyushu Fan into the inner accretionary prism implies that the décollement was located in the hemipelagic interval beneath the Kyushu Fan at least until ∼2 Ma, whereas it is now located in the hemipelagic intervals below the Zenisu Fan. Such shifts in décollement location are most likely related to changes in physical properties of the hemipelagic interval due to significant compaction and diagenesis during subduction.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3