Spatial Variations in the Degree of Upper‐Mantle Depletion in a Mid‐Ocean Ridge–Transform Fault System

Author:

Morishige M.1ORCID

Affiliation:

1. Earthquake Research Institute The University of Tokyo Tokyo Japan

Abstract

AbstractPartial melting beneath a mid‐ocean ridge creates a chemically depleted layer in the uppermost mantle. This chemical depletion lowers the density of the lithosphere compared with the unmelted mantle. Furthermore, dehydration associated with depletion leads to an increase in mantle viscosity that may affect the structure and dynamics of the oceanic plate. Previous studies have mainly considered the formation of this depleted upper‐mantle layer in a two‐dimensional mid‐ocean ridge setting, leaving the dynamics of mid‐ocean ridge–transform fault systems largely unexplored. In this study, spatial variations in the degree of depletion in the uppermost mantle are predicted for a mid‐ocean ridge–transform fault system using a three‐dimensional thermomechanical model. The degree of depletion generally increases with increasing half‐spreading rate. Less depletion is predicted beneath the transform fault and fracture zone compared with the surrounding mantle. Lateral differences in the degree of depletion in the ridge‐parallel direction are reduced when plastic yielding is considered. The degree of variation in the predicted depletion is related to the transform fault length especially at a low spreading rate, thereby suggesting that the large scatter in observed abyssal peridotite compositions with slow spreading rates could be partly attributed to the length of the fault.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3