Preliminary Characterization of Submarine Basalt Magnetic Mineralogy Using Amplitude‐Dependence of Magnetic Susceptibility

Author:

Yang H.12ORCID,Tikoo S. M.12ORCID,Carvallo C.3ORCID,Bilardello D.4ORCID,Solheid P.4,Gaastra K. M.56ORCID,Sager W. W.5ORCID,Thoram S.5ORCID,Hoernle K.7,Höfig T. W.89,Avery A.10,Del Gaudio A. V.11ORCID,Huang Y.12ORCID,Bhutani R.13,Buchs D. M.14,Class C.15ORCID,Dai Y.16ORCID,Dalla Valle G.17ORCID,Fielding S.18,Han S.19,Heaton D. E.20ORCID,Homrighausen S.7,Kubota Y.21,Li C.‐F.22ORCID,Nelson W. R.23ORCID,Petrou E.24,Potter K. E.25,Pujatti S.26ORCID,Scholpp J.27ORCID,Shervais J. W.25ORCID,Tshiningayamwe M.28,Wang X. J.29,Widdowson M.30ORCID

Affiliation:

1. Department of Geophysics Stanford University Stanford CA USA

2. Department of Earth and Planetary Sciences Stanford University Stanford CA USA

3. UMR 7590 Institut de Minéralogie de Physique des Matériaux et de Cosmochimie Sorbonne Université Paris France

4. Institute for Rock Magnetism University of Minnesota Minneapolis MN USA

5. Department of Earth and Atmospheric Sciences University of Houston Houston TX USA

6. NASA Jet Propulsion Labortatory California Institute of Technology Pasadena CA USA

7. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

8. International Ocean Discovery Program Texas A&M University College Station TX USA

9. Project Management Jülich Jülich Research Centre GmbH (FZJ) Rostock Germany

10. School of Geosciences University of South Florida Tampa FL USA

11. Department of Earth Sciences (Geology and Paleontology) University of Graz NAWI Graz Geocenter Graz Austria

12. Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University) Ministry of Education Wuhan China

13. Department of Earth Sciences Pondicherry University Puducherry India

14. School of Earth and Environmental Sciences Cardiff University Cardiff UK

15. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

16. Department of Geology Lund University Lund Sweden

17. Institute for Marine Sciences National Research Council Bologna Italy

18. Geology Department University of Namibia Windhoek Namibia

19. School of Environmental Science and Technology Gwangju Institute of Science and Technology Gwangju South Korea

20. CEOAS Oregon State University Corvallis OR USA

21. Department of Geosciences Penn State University State College PA USA

22. Ocean College Zhejiang University Zhoushan China

23. Department of Physics Astronomy & Geosciences Towson University Towson MD USA

24. Department of Earth Sciences University of Oxford Oxford UK

25. Department of Geosciences Utah State University Logan UT USA

26. Department of Geoscience University of Calgary Calgary AB Canada

27. Department of Earth and Planetary Sciences University of Tennessee Knoxville TN USA

28. Geology Department University of Namibia Keetmanshoop Namibia

29. Department of Geology Northwest University Xi'an China

30. School of Environmental Sciences University of Hull Hull UK

Abstract

AbstractThe past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.

Publisher

American Geophysical Union (AGU)

Reference57 articles.

1. Paleomagnetic overprints in ocean sediment cores and their relationship to shear deformation caused by piston coring

2. New Grain Size Limits for Palaeomagnetic Stability in Haematite

3. Magnetization during low-temperature oxidation of seafloor basalts: No large scale chemical remagnetization

4. A review of the low temperature AC susceptibility frequency‐dependence of multidomain (titano)magnetite;Bilardello D.;The IRM Quarterly,2023

5. Practical magnetism IV: Feats and challenges in quantifying hematite with magnetic methods;Bilardello D.;The IRM Quarterly,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3