Anisotropic Reversible‐Jump McMC Shear‐Velocity Tomography of the Eastern Alpine Crust

Author:

Kästle E. D.1ORCID,Tilmann F.12ORCID,

Affiliation:

1. Institute for Geological Sciences Freie Universität Berlin Berlin Germany

2. Geoforschungszentrum GFZ Potsdam Potsdam Germany

Abstract

AbstractThe eastern Alpine crust has been shaped by the continental collision of the European and Adriatic plates beginning at 35 Ma and was affected by a major reorganization after 20 Ma. To better understand how the eastern Alpine surface structures link with deep seated processes, we analyze the depth‐dependent seismic anisotropy based on Rayleigh wave propagation. Ambient noise recordings are evaluated to extract Rayleigh wave phase dispersion measurements. These are inverted in a two step approach for the azimuthally anisotropic shear velocity structure. Both steps are performed with a reversible jump Markov chain Monte Carlo (rj‐McMC) approach that estimates data errors and propagates the modeled uncertainties from the phase velocity maps into the depth inversion. A two layer structure of azimuthal anisotropy is imaged in the Alpine crust, with an orogen‐parallel upper crust and approximately orogen‐perpendicular layer in the lower crust and the uppermost mantle. In the upper layer, the anisotropy tends to follow major fault lines and may thus be an apparent, structurally driven anisotropy. The main foliation and fold axis orientations might contribute to the anisotropy. In the lower crust, the N‐S orientation of the fast axis is mostly confined to regions north of the Periadriatic Fault and may be related to European subduction. Outside the orogen, no clearly layered structure is identified. The anisotropy pattern in the northern Alpine foreland is found to be similar compared to SKS studies which is an indication of very homogeneous fast axis directions throughout the crust and the upper mantle.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3