P–T Evolution of the Cyclades Blueschist Unit: Constraints on the Evolution of a Nascent Subduction System From Zr‐In‐Rutile (ZiR) and Quartz‐In‐Garnet (QuiG) Thermobarometry

Author:

Spear Frank S.1ORCID,Wolfe Oliver M.1,Thomas Jay B.2,Hubbard Julia E.1ORCID,Castro Adrian E.3ORCID,Cheney John T.4

Affiliation:

1. Department of Earth and Environmental Sciences Rensselaer Polytechnic Institute Troy NY USA

2. Department of Earth and Environmental Sciences Syracuse University Syracuse NY USA

3. Department of Geosciences Wellesley College Wellesley MA USA

4. Department of Geology Amherst College Amherst MA USA

Abstract

AbstractNew results that employ Zr‐in‐rutile thermometry (ZiR) and quartz‐inclusion‐in‐garnet (QuiG) barometry constrain the P–T conditions of garnet formation in blueschists and eclogites from the island of Syros, Greece. QuiG barometry reveals that garnet from different regions across the island formed at pressures ranging from 1.1 to 1.8 GPa and ZiR thermometry on rutile inclusions in garnet constrains the minimum temperature of garnet formation to have been 475–550°C. Most importantly, there is no systematic difference in the conditions of garnet formation from different regions across the island and these results are nearly identical to those obtained from the islands of Sifnos and Ios, Greece. A model is proposed whereby the rocks from all three islands were initially metamorphosed along a relatively shallow geotherm of around 11°C/km to a depth of around 45 km and were then subjected to metamorphism along a geotherm of around 7–8°C/km, which could have been caused by either an increase in the dip of the subduction zone or an increase in the rate of subduction. Garnet formed along this steeper geotherm was accompanied by the release of significant H2O from the breakdown of chlorite over a duration of 1 Ma or less based on thermal and diffusion modeling. It is concluded that rocks from Syros, Sifnos and Ios all followed a similar, roughly counter‐clockwise prograde P–T path and that the present outcrop configuration is largely due to a complex exhumation history.

Funder

National Science Foundation

Syracuse University

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3