Controls on Mineral Formation in High pH Fluids From the Lost City Hydrothermal Field

Author:

Aquino Karmina A.12ORCID,Früh‐Green Gretchen L.1ORCID,Bernasconi Stefano M.1ORCID,Bontognali Tomaso R. R.34ORCID,Foubert Anneleen5,Lang Susan Q.6

Affiliation:

1. Department of Earth Sciences ETH Zürich Zürich Switzerland

2. Now at Department of Science and Technology—Philippine Nuclear Research Institute Quezon City Philippines

3. Space Exploration Institute Neuchâtel Switzerland

4. Department of Environmental Sciences University of Basel Basel Switzerland

5. Department of Geosciences—Geology University of Fribourg Fribourg Switzerland

6. Woods Hole Oceanographic Institution Woods Hole MA USA

Abstract

AbstractAlthough the serpentinite‐hosted Lost City hydrothermal field (LCHF) was discovered more than 20 years ago, it remains unclear whether and how the presence of microbes affects the mineralogy and textures of the hydrothermal chimney structures. Most chimneys have flow textures comprised of mineral walls bounding paleo‐channels, which are preserved in inactive vent structures to a varying degree. Brucite lines the internal part of these channels, while aragonite dominates the exterior. Calcite is also present locally, mostly associated with brucite. Based on a combination of microscopic and geochemical analyses, we interpret brucite, calcite, and aragonite as primary minerals that precipitate abiotically from mixing seawater and hydrothermal fluids. We also observed local brucite precipitation on microbial filaments and, in some cases, microbial filaments may affect the growth direction of brucite crystals. Brucite is more fluorescent than carbonate minerals, possibly indicating the presence of organic compounds. Our results point to brucite as an important substrate for microbial life in alkaline hydrothermal systems.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3