Deep‐Learning Analysis of Fracture Networks Leading to System‐Size Failure in Rocks

Author:

Mathiesen Joachim12ORCID,McBeck Jessica2ORCID,Cordonnier Benoît3,Ben‐Zion Yehuda4ORCID,Renard François25ORCID

Affiliation:

1. Niels Bohr Institute University of Copenhagen Copenhagen Denmark

2. Departments of Geosciences and Physics The Njord Centre University of Oslo Oslo Norway

3. ESRF The European Synchrotron Grenoble France

4. Department of Earth Sciences and Statewide California Earthquake Center University of Southern California Los Angeles CA USA

5. ISTerre CNRS IRD University Grenoble Alpes University Savoie Mont Blanc University Gustave Eiffel Grenoble France

Abstract

AbstractFracture networks in rocks and other geomaterials form by seismic and aseismic damage processes that could lead to system‐size failure. Here, we use a multi‐view convolutional neural network model to predict the stress proximity to macroscopic failure of experimentally deformed rock samples using two‐dimensional images. Models are trained on time series of fractures observed in rock samples through dynamic in situ synchrotron X‐ray tomography experiments. The results demonstrate that deep learning models outperform traditional estimates based on fracture density, increasing the accuracy of the predictions. Furthermore, the models provide insights into fundamental characteristics of fracture patterns that may provide precursory information on impending material failure. The trained deep learning models estimate the angle of the fracture plane relative to the principal loading direction, which is a key factor contributing to shear failure. The predicted angle of the fracture plane, in the range of 10°–30° with respect to the direction of maximum compressive stress, is consistent with the established failure criteria used in rock mechanics.

Funder

Danish Agency for Science and Higher Education

European Synchrotron Radiation Facility

European Research Council

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3