Ongoing Activity at Hunga Submarine Volcano, Tonga: The Case for Better Monitoring of Submarine Volcanoes Worldwide

Author:

Walker Sharon L.1ORCID,de Ronde Cornel E. J.2ORCID

Affiliation:

1. Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle WA USA

2. GNS Science Lower Hutt New Zealand

Abstract

AbstractThe powerful eruption of Hunga volcano (15‐January‐2022) excavated ∼6.3 km3 of pre‐existing material, leaving behind an 855 m deep crater. The scientific and humanitarian response to this event was challenging due to the remote location, safety concerns, and COVID‐19 pandemic restrictions. To investigate the status of ongoing eruptive/hydrothermal activity, this study used, for the first time, an un‐crewed surface vessel operated remotely from >16,000 km away to make direct water column measurements within the crater and map its structure in detail. Intense turbidity and oxidation‐reduction potential (ORP) anomalies located ongoing activity at sites on the steep inside crater slopes near both remaining islands. Mid‐water acoustic reflectors indicated ongoing degassing, and positive ORP anomalies suggested gas composition was dominated by CO2. At least 75% of the crater rim is shallower than 100 m, so any exchange with the surrounding ocean is limited by the depths of breaches in the rim (185 m between the islands and 290 m on the ENE side). This post‐eruption bathymetry results in accumulation of emission products within the deep crater. There were no indications of the ongoing activity visible at the ocean surface, which highlights the limitations and inherent biases associated with relying on discolored surface water and/or atmospheric disturbances to determine eruption start/end dates at submarine volcanoes. This study demonstrates the value and need to add repeat hydrothermal plume and bathymetric surveys to our toolbox for monitoring submarine volcanoes, and the potential for un‐crewed, remotely operated vessels to contribute significantly to these efforts.

Funder

NOAA Pacific Marine Environmental Laboratory

GNS Science

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3