Reconstructing Redox Landscape With Coupled Nitrogen‐Sulfur Isotopes: A Case Study From Middle‐Late Triassic Chang 7 Member of the Yanchang Formation in the Ordos Basin (North China)

Author:

Wang Xubin12ORCID,Dong Lin12ORCID,Li Tong12,Ling Kun12,Zhang Changhu12,Bin Yijie12,Wang Ziyi12,Jin Zhijun23ORCID,Fu Jinhua4

Affiliation:

1. Key Laboratory of Orogenic Belts and Crustal Evolution MOE Beijing China

2. School of Earth and Space Science Peking University Beijing China

3. Institute of Energy Peking University Beijing China

4. PetroChina Changqing Oilfield Company Xi'an China

Abstract

AbstractEuxinia, a crucial geological condition, usually signifies more severe extinction events attributed to deoxygenation in Earth's history. Despite extensive exploration of various proxies in paleoredox studies, most are primarily utilized to reconstruct atmospheric pO2, the proportion of anoxic water relative to the entire basin, and broader trends in redox states. Few, however, hold the capacity to precisely delineate local euxinia within confined areas. To address this gap and gain insights into the temporal and spatial extent of benthic euxinia, we propose leveraging the synergistic analysis of total nitrogen isotopes (δ15NTN) and pyrite sulfur isotopes (δ34Spy). Our study focuses on the Triassic Chang 7 Member from the Yanchang Formation, Ordos Basin, North China. Through coupling the δ15NTN and δ34Spy systematics on 11 drill cores within the Ordos Basin, we reconstruct the temporal and spatial distribution of the benthic euxinia zone during the Chang‐7 period. Our results suggest strong spatial heterogeneity of benthic redox conditions, with the euxinia boundary shifting from the central lake to the southwestern sections. Moreover, we identify redox‐controlling factors, including organic carbon loading, water depth, and potential water circulation, and evaluate their interplay with benthic euxinia. Furthermore, the discernment of water circulation patterns may provide an innovative approach to restore the paleowind direction. These findings highlight the effectiveness of coupling δ15NTN and δ34Spy in reconstructing the local benthic redox landscape of benthic environments, and enrich our understanding of biogeochemical processes.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3