Slab Driven Quaternary Rock‐Uplift and Topographic Evolution in the Northern‐Central Apennines From Linear Inversion of the Drainage System

Author:

Racano S.1ORCID,van der Beek P. A.1ORCID,Schildgen T. F.12ORCID,Faccenna C.23ORCID,Buleo Tebar V.4,Cosentino D.3ORCID

Affiliation:

1. Institute of Geosciences University of Potsdam Potsdam Germany

2. GFZ German Research Centre for Geosciences Potsdam Germany

3. Department of Science University of Roma Tre Rome Italy

4. Department of Life Sciences and Systems Biology University of Turin Turin Italy

Abstract

AbstractInvestigating rock‐uplift variations in time and space provides insights into the processes driving mountain‐belt evolution. The Apennine Mountains of Italy underwent substantial Quaternary rock uplift that shaped the present‐day topography. Here, we present linear river‐profile inversions for 28 catchments draining the eastern flank of the Northern‐Central Apennines to reconstruct rock‐uplift histories. We calibrated these results by estimating an erodibility coefficient (K) from incision rates and catchment‐averaged erosion rates obtained from cosmogenic‐nuclide data, and we tested whether a uniform or variable K produces a rock‐uplift model that satisfactorily fits independent geochronological constraints. We employ a landscape‐evolution model to demonstrate that our inversion results are reliable despite substantial seaward lengthening of the catchments during uplift. Our findings suggest that a rock‐uplift pulse started around 3.0–2.5 Ma, coinciding with the onset of extension in the Apennines, and migrated southward at a rate of ∼90 km/Myr. The highest reconstructed rock‐uplift rates (>1 km/Myr) occur in the region encompassing the highest Apennine massifs. These results are consistent with numerical models and field evidence from other regions exhibiting rapid rock‐uplift pulses and uplift migration related to slab break‐off. Our results support the hypothesis of break‐off of the Adria slab under the central Apennines and its southward propagation during the Quaternary. Moreover, the results suggest a renewed increase in rock‐uplift rates after the Middle Pleistocene along the Adriatic coast, coeval with recent uplift acceleration along the eastern coast of southern Italy in the Apulian foreland.

Publisher

American Geophysical Union (AGU)

Reference119 articles.

1. Growth rates and two‐mode accretion in the outer orogenic wedge‐foreland basin system of Central Apennine (Italy);Artoni A.;Bolletino della Società Geolica Italiana,2007

2. The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3