Controls on Sr/Ca, S/Ca, and Mg/Ca in Benthic Foraminifera: Implications for the Carbonate Chemistry of the Pacific Ocean Over the Last 350 ky

Author:

Lawson V. J.12ORCID,Rosenthal Y.12ORCID,Bova S. C.3ORCID,Lambert J.45,Linsley B. K.4ORCID,Bu K.2,Clementi V. J.2ORCID,Elmore A.6ORCID,McClymont E. L.7ORCID

Affiliation:

1. Department of Earth and Planetary Sciences Rutgers, The State University of New Jersey Piscataway NJ USA

2. Department of Marine and Coastal Sciences Rutgers, The State University of New Jersey New Brunswick NJ USA

3. Department of Earth and Environmental Sciences San Diego State University San Diego CA USA

4. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

5. Department of Earth and Environmental Sciences Columbia University New York NY USA

6. National Oceanic and Atmospheric Administration Ocean Exploration Silver Spring MD USA

7. Department of Geography Durham University Durham England

Abstract

AbstractBoron to calcium (B/Ca) records in benthic foraminifera, used for reconstructing the carbonate ion saturation state (ΔCO3) of the deep ocean, suggest that carbon sequestration in the Southern Pacific contributed to lowering atmospheric CO2 during the last glacial interval. However, the spatial and temporal extent of this storage is debated due to limited ΔCO3 records. To increase available ΔCO3 records, we explored using strontium and sulfur to calcium (Sr/Ca, S/Ca) in Planulina wuellerstorfi as additional proxies for ΔCO3 based on comparison with paired B/Ca down‐core records from Pacific Sites U1486 (1,332 m depth) and U1487 (874 m depth) cored during the International Ocean Discovery Program Expedition 363. The Sr/Ca and S/Ca records from P. wuellerstorfi closely covary with the B/Ca‐derived ΔCO3 records. Temperature, reconstructed using Uvigerina peregrina magnesium to calcium (Mg/Ca), has no discernible effect on Sr/Ca, whereas S/Ca also varies with Mg/Ca in both U. peregrina and P. wuellerstorfi, suggesting an additional temperature effect. Mg/Ca records from P. wuellerstorfi are affected by both temperature and ΔCO3. We assess calibrations of Sr/Ca to ΔCO3 for the Atlantic, Pacific, and Indian Oceans and recommend using the down‐core rather than core‐top calibrations as they yield consistent sensitivity, though with offsets, in all ocean basins. Reconstructing Pacific ΔCO3 records from sites U1486, U1487, and DSDP 593, we demonstrate the benefit of using Sr/Ca as an additional ΔCO3 proxy to assess the contribution of the Southern Pacific to the increase of atmospheric CO2 at glacial terminations.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3