Evaluating the Physics of Outcrop‐To‐Outcrop Flow With Hydrothermal Flow Models

Author:

Kremin I.1ORCID,Guo Z.12ORCID,Rüpke L.1ORCID

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

2. Key Laboratory of Submarine Geosciences MNR Second Institute of Oceanography MNR Hangzhou China

Abstract

AbstractCold and diffuse hydrothermal circulation on mid‐ocean ridge flanks impacts heat and fluid fluxes between the seafloor and the ocean. One mode of this circulation is given by outcrop‐to‐outcrop flow, where seawater circulates through a crustal aquifer that connects two or more recharging and discharging seamounts or basement highs that outcrop through the less permeable sediment cover. The physical mechanism driving this flow is a lateral pressure gradient that is sustained by contrasting the hydrological properties of the recharging and discharging outcrops. To investigate the physical controls of this pressure gradient, we performed two‐dimensional numerical simulations of coupled heat transfer and fluid flow. We have modified aquifer permeability, outcrop permeability and width, outcrop distance, and sediment thickness to assess their mutual effects on the lateral pressure differences. We have also investigated how different flow patterns, resulting from changes in these parameters, manifest themselves in seafloor observables such as flow rates, aquifer temperatures, and heat flow. Our models show that outcrop‐to‐outcrop flow generally occurs for aquifer permeabilities ≥10−14 m2, depending on the basal heat input. High aquifer permeabilities correspond to fast flow rates and low fluid temperatures, whereas the maximum lateral pressure differences arise for lower permeabilities. The permeability and the geometric shape of the outcrops determine the flow direction, while the aquifer temperature is also affected by the distance between the outcrops. Thicker sediments increase the lateral pressure difference and the flow rate. Our models thus provide constraints for predicting subseafloor hydrothermal ridge flank flow behavior from regional field data.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3