Calculating the Soil Freezing Characteristic Curve of Saline Soil With Equivalent State of Bulk Solution

Author:

Cui Lihong12ORCID,Xiao Zean3,Chen Junfeng1,Yuan Qinbo2,Zhao Xuehua1,Xue Jing1

Affiliation:

1. College of Water Resources and Engineering, Taiyuan University of Technology Taiyuan China

2. TPECO Ecological Engineering Technology Taiyuan China

3. College of Civil Engineering, Taiyuan University of Technology Taiyuan China

Abstract

AbstractThe relationship between unfrozen water content and temperature, called as soil freezing characteristic curve (SFCC), is of importance for hydrologic, engineering, environmental issues related to frozen soil. The SFCC of saline soil is essentially a result of phase equilibrium of pore solution, which is similar but not identical to that of bulk solution. However, there is still a vacancy of study on the phase equilibrium of pore solution in frozen soil. In this study, image transformation was used to establish the relationship of phase equilibrium between bulk solution and pore solution, with four introduced parameters. Then, the new model of SFCC for saline soil was proposed based on the equivalent state of bulk solution with Pitzer model and SFCC of nonsaline soil. The model was validated by the experimental data from published articles and showed good performance in calculating SFCC of saline soils regardless of soil type, phase transition path, and soil initial water‐salt condition, and some advantages when compared to other three models. All the four introduced parameters have clear physical meanings and their relationships with soil type and initial salt concentration were discussed. Finally, the evolution of phase diagram from bulk solution to pore solution at icing stage was figured out. Further studies are needed for their relationship at salt crystallization stage. Shifting the research perspective from unfrozen water content to pore solution, this study gives a new approach to research of freezing characteristic of saline soil and could promote hydrological and engineering research in cold regions.

Funder

Natural Science Foundation of Shanxi Province

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3