Drought Characterization With GPS: Insights Into Groundwater and Surface‐Reservoir Storage in California

Author:

Young Zachary M.1ORCID,Martens Hilary R.1ORCID,Hoylman Zachary H.2ORCID,Gardner W. Payton1ORCID

Affiliation:

1. Department of Geosciences University of Montana Missoula MT USA

2. Montana Climate Office W.A. Franke College of Forestry and Conservation University of Montana Missoula MT USA

Abstract

AbstractDrought intensity is commonly characterized using meteorologically‐based metrics that do not provide insight into water deficits within deeper hydrologic systems. In contrast, global positioning system (GPS) displacements are sensitive to both local and regional hydrologic‐storage fluctuations. While a few studies have leveraged this sensitivity to produce geodetic drought indices, hydrologic drought characterization using GPS is not commonly accounted for in drought assessment and management. To motivate this application, we produce a new geodetic drought index (GDI) and quantify its ability to characterize hydrologic drought conditions in key surface and sub‐surface hydrologic reservoirs/pools across California. In northern California, the GDI exhibits a strong regional association with surface‐reservoir storage at the 1‐month time scale (correlation coefficient: 0.83) and groundwater levels at the 3‐month time scale (correlation coefficient: 0.87), along with moderate associations with stream discharge at the daily (instantaneous) time scale (correlation coefficient: 0.50). Groundwater in southern California is best characterized with a 12‐month GDI (correlation coefficient: 0.77), and surface‐reservoir storage is optimized with the 3‐month GDI (correlation coefficient: 0.72). Two sigma uncertainties are ±0.03. Differences between northern and southern California reveal that the GDI is sensitive to unique aquifer and drainage basin characteristics. In addition to capturing long‐term hydrologic trends, rapid changes in the GDI initiate during clusters of large atmospheric river events that closely mirror fluctuations in traditional hydrologic and meteorological observations. We show that GPS‐based hydrologic drought indices provide a significant opportunity to improve drought assessment, in California and beyond, by improving our understanding of the hydrologic cycle.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3