Assessing the Response Mechanisms of Elevated CO2 Concentration on Various Forms of Nitrogen Losses in the Golden Corn Belt

Author:

Zhang Yingqi1,Han Yiwen1,Wen Na1,Qi Junyu2,Zhang Xiaoyu1,Marek Gary W.3,Srinivasan Raghavan4,Feng Puyu1,Liu De Li56,Hu Kelin1ORCID,Chen Yong1ORCID

Affiliation:

1. College of Land Science and Technology, State Key Laboratory of Efficient Utilization of Agricultural Water Resources China Agricultural University Beijing China

2. Earth System Science Interdisciplinary Center University of Maryland College Park MD USA

3. USDA‐ARS Conservation and Production Research Laboratory Bushland TX USA

4. Department of Ecosystem Science and Management Texas A&M University College Station TX USA

5. NSW Department of Primary Industries Wagga Wagga Agricultural Institute Wagga Wagga NSW Australia

6. Climate Change Research Centre University of New South Wales Sydney NSW Australia

Abstract

AbstractNitrogen (N) loss is a significant source of water quality pollution in alluvial watersheds. However, the mechanisms linking N loss and elevated CO2 concentration (eCO2) are not well recognized. In this study, we comprehensively calibrated the SWAT model equipped with a dynamic CO2 input and response module to investigate the response mechanisms between multiform N losses and eCO2 in a representative large‐scale watershed. Results revealed nitrate loss under eCO2 exceeding 100% in some upstream zones under the SSP5‐8.5 scenario (P < 0.05) compared to the constant CO2 concentration. This was directly related to the great increase in hydrological variables, which were the carriers of N losses, and the intensive inputs of N fertilizer. Results also found that nitrate leaching was greater than the other two processes for future periods, peaking at 309.3%, as compared to the baseline period. The findings suggested reducing fertilizer inputs by 10%–20% was promising, especially for reducing nitrate loss through runoff and leaching by up to 17.7% and 12.2%. This study explored the mechanisms of increased N loss in response to eCO2 and provided scientific evidence for early warning and making decisions to improve water quality at a large watershed scale.

Funder

National Key Research and Development Program of China

National Institute of Food and Agriculture

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3