Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative Adversarial Network

Author:

Sun Ruochen123ORCID,Pan Baoxiang4ORCID,Duan Qingyun123ORCID

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

2. College of Hydrology and Water Resources Hohai University Nanjing China

3. China Meteorological Administration Hydro‐Meteorology Key Laboratory Hohai University Nanjing China

4. Institute of Atmospheric Physics Chinese Academy of Science Beijing China

Abstract

AbstractLand surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

Reference66 articles.

1. Accelerating advances in continental domain hydrologic modeling

2. Global Fully Distributed Parameter Regionalization Based on Observed Streamflow From 4,229 Headwater Catchments

3. Brock A. Donahue J. &Simonyan K.(2018).Large scale GAN training for high fidelity natural image synthesis.arXiv preprint arXiv:1809.11096.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3