Evaluating the Retreat, Arrest, and Regrowth of Crane Glacier Against Marine Ice Cliff Process Models

Author:

Needell C.1ORCID,Holschuh N.1ORCID

Affiliation:

1. Department of Geology Amherst College Amherst MA USA

Abstract

AbstractThe fastest projected rates of sea level rise appear in models which include “the marine ice cliff instability (MICI),” a hypothesized but mostly unobserved process defined by rapid fracture and wastage of terminal ice cliffs that outpaces viscous relaxation and ice‐shelf formation. Crane Glacier's response to the Larsen B Ice Shelf collapse has been invoked as evidence of MICI in the observational record. Using available remote sensing data, we analyze Crane's retreat, arrest, and regrowth over the last two decades. Much of Crane's terminus retreat occurred in floating, not grounded ice. Retreat accelerated by at least 54% during the 2 years following ice shelf collapse. This is inconsistent with contemporaneous regional forcing that promoted ice shelf growth during this period, but consistent with a geometrically controlled positive feedback. We infer a maximum possible cliff height of 111 m, which according to process models, could enable cliff calving assuming damaged ice.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3