Ab Initio Melting Temperatures of Bcc and Hcp Iron Under the Earth’s Inner Core Condition

Author:

Sun Yang123ORCID,Mendelev Mikhail I.4,Zhang Feng3,Liu Xun5,Da Bo5,Wang Cai‐Zhuang3,Wentzcovitch Renata M.267ORCID,Ho Kai‐Ming3

Affiliation:

1. Department of Physics Xiamen University Xiamen China

2. Department of Applied Physics and Applied Mathematics Columbia University New York NY USA

3. Department of Physics Iowa State University Ames IA USA

4. Intelligent Systems Division NASA Ames Research Center Moffett Field CA USA

5. Research and Services Division of Materials Data and Integrated System National Institute for Materials Science Ibaraki Japan

6. Department of Earth and Environmental Sciences Columbia University New York NY USA

7. Lamont–Doherty Earth Observatory Columbia University Palisades NY USA

Abstract

AbstractThere has been a long debate on the stable phase of iron under the Earth’s inner core conditions. Because of the solid‐liquid coexistence at the inner core boundary, the thermodynamic stability of solid phases directly relates to their melting temperatures, which remains considerable uncertainty. In the present study, we utilized a semi‐empirical potential fitted to high‐temperature ab initio data to perform a thermodynamic integration from classical systems described by this potential to ab initio systems. This method provides a smooth path for thermodynamic integration and significantly reduces the uncertainty caused by the finite‐size effect. Our results suggest the hcp phase is the stable phase of pure iron under the inner core conditions, while the free energy difference between the hcp and bcc phases is tiny, on the order of 10 s meV/atom near the melting temperature.

Funder

National Science Foundation

National Institute for Materials Science

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3