Slow‐Moving Landslides Triggered by the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand: A New InSAR Phase‐Gradient Based Time‐Series Approach

Author:

Cao Yunmeng1ORCID,Hamling Ian1ORCID,Massey Chris1ORCID,Upton Phaedra1ORCID

Affiliation:

1. GNS Science Lower Hutt New Zealand

Abstract

AbstractEarthquake‐triggered slow‐moving landslides are not well studied mainly due to a lack of high‐resolution in‐situ geodetic observations both in time and space. Satellite‐based interferometric synthetic aperture radar (InSAR) has shown potential in landslides applications, however, it is challenging to detect earthquake‐triggered slow‐moving landslides over large areas due to the effects of post‐seismic tectonic deformations, atmospheric delays, and other spatially propagated errors (e.g., unwrapped errors caused by decorrelation noises). Here, we present a novel InSAR phase‐gradient‐based time‐series approach to detect slow‐moving landslides that triggered by the 2016 Mw 7.8 Kaikōura earthquake. Twenty‐one earthquake‐triggered large (>0.1 km2) slow‐moving landslides are detected and studied. Our results reveal decaying characteristics of the temporal evolutions of these landslides, that averagely 3.9 years after the earthquake, their post‐seismic velocity will decay by 90% to reach approximately the pre‐seismic level. Our study opens new perspectives for understanding mass balance of earthquakes and helps reduce associated hazards.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3