A Positive Cooling Feedback for the Neoproterozoic Snowball Earth Initiation Due To Weakening of Ocean Ventilation

Author:

Liu Peng12ORCID,Liu Yonggang3ORCID,Gu Sifan4ORCID,Hoffman Paul5ORCID,Li Sanzhong12ORCID

Affiliation:

1. Frontiers Science Center for Deep Ocean Multispheres and Earth System Key Lab of Submarine Geosciences and Prospecting Techniques Ministry of Education and College of Marine Geosciences Ocean University of China Qingdao China

2. Laboratory for Marine Mineral Resources Qingdao National Laboratory for Marine Science and Technology Qingdao China

3. Laboratory for Climate and Ocean‐Atmosphere Studies, Department of Atmospheric and Oceanic Sciences School of Physics Peking University Beijing China

4. School of Oceanography Shanghai Jiao Tong University Shanghai China

5. School of Earth and Ocean Sciences University of Victoria Victoria BC Canada

Abstract

AbstractOcean ventilation is an important regulator for atmospheric CO2 level (pCO2) by affecting the relative proportion of carbon stored in the atmosphere and deep ocean. Expansion of sea ice during glacial periods slows down ocean ventilation and its effect is expected to be the largest during the Neoproterozoic pre‐snowball stage. Here, our Community Earth System Model version 1.2.2 simulations demonstrate that averaged deep ocean ventilation age almost triples when the climate cools from a warm state with negligible sea ice to one in which the global sea‐ice coverage reaches ∼50% when pCO2 is lowered to 280 ppmv. Further cooling by reducing pCO2 from 280 to 70 ppmv increases the ventilation age from 1900 to 2300 years. This latter small increase in deep‐ocean ventilation age can reduce pCO2 by 48 ppmv, assuming Neoproterozoic organic production was comparable to present level. Therefore, the weakened ocean ventilation constitutes a significant positive feedback to the Late Neoproterozoic climate cooling.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3