Affiliation:
1. Geophysical Institute (GPI) Karlsruhe Institute of Technology Karlsruhe Germany
2. School of Environmental Sciences University of East Anglia Norwich UK
3. Department of Geological Engineering and Exploration of Mines Kabul Polytechnic University Kabul Afghanistan
4. Global Geomonitoring and Gravity Field German Research Center for GeoSciences (GFZ) Potsdam Germany
Abstract
AbstractOn June 21st, a Mw6.2 earthquake struck the Afghan‐Pakistan‐border‐region, situated within the India‐Asia collision. Thousand thirty‐nine deaths were reported, making the earthquake the deadliest of 2022. We investigate the event's rupture processes by combining seismological and geodetic observations, aiming to understand what made it that fatal. Our Interferometric Synthetic Aperture Radar‐constrained slip‐model and regional moment‐tensor inversion, confirmed through field observations, reveal a sinistral rupture with maximum slip of 1.8 m at 5 km depth on a N20°E striking, sub‐vertical fault. We suggest that not only external factors (event‐time, building stock) but fault‐specific factors made the event excessively destructive. Surface rupture was favored by the rock foliation, coinciding with the fault strike. The distribution of Peak‐Ground‐Velocity was governed by the sub‐vertical fault. Maximum slip was large compared to other events globally and might have resulted in peak‐frequencies coinciding with resonance‐frequencies of the local buildings and demonstrates the devastating impact of moderate‐size earthquakes.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献