Affiliation:
1. Département de Mathématiques Université du Québec à Montréal Montréal QC Canada
2. Now at Institutional Shareholder Services Canada Inc. Toronto ON Canada
Abstract
AbstractEl Niño‐Southern Oscillation (ENSO) is often considered as a source of long‐term predictability for extreme events via its teleconnection patterns. However, given that its characteristic cycle varies from two to 7 years, it is difficult to obtain statistically significant conclusions based on observational periods spanning only a few decades. To overcome this, we apply the global flood risk modeling framework developed by Carozza and Boudreault to an equivalent of 1,600 years of bias‐corrected General Circulation Model outputs. The results show substantial anomalies in flood occurrences and impacts for El Niño and La Niña when compared to the all‐year baseline. We were able to obtain a larger global coverage of statistically significant results than previous studies limited to observational data. Asymmetries in anomalies for both ENSO phases show a larger global influence of El Niño than La Niña on flood hazard and risk.
Funder
Fonds de recherche du Québec – Nature et technologies
Natural Sciences and Engineering Research Council of Canada
Marine Environmental Observation Prediction and Response Network
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献