Quantifying Flow Velocities in River Deltas via Remotely Sensed Suspended Sediment Concentration

Author:

Donatelli Carmine12ORCID,Passalacqua Paola1ORCID,Wright Kyle1ORCID,Salter Gerard3ORCID,Lamb Michael P.3,Jensen Daniel4ORCID,Fagherazzi Sergio2ORCID

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering University of Texas at Austin Austin TX USA

2. Department of Earth and Environment Boston University Boston MA USA

3. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA

4. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractDeltas are fragile ecosystems threatened by sea‐level rise, sediment starvation, and subsidence. Erosional/depositional processes in these systems mainly depend on the sediment supply and the spatial divergence in bed shear stress induced by hydrodynamic forces. Thus, quantifying the spatiotemporal variability of the flow velocity field is essential for forecasting their fate. To calibrate/validate models, field measurements alone are not sufficient because such data only characterize the hydrodynamic conditions in localized areas. Remote sensing has potential to fill this data gap. We developed a methodology to estimate flow velocities from a map of suspended sediment concentration (SSC) measured by the NASA airborne spectrometer AVIRIS‐NG within the Wax Lake Delta, Louisiana. We extracted streaklines from remotely sensed SSC estimates, and quantified water fluxes and velocities based on the distance between them. Our study demonstrates that the velocity field in deltas can be estimated by leveraging the synoptic information offered by remote sensing.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3